Best Vertical Monitor 2020 – Quick List:

  1. Dell Ultra Sharp U2718Q 4K Monitor – Best Vertical Monitor 2020 (Overall)
  2. ASUS VN279QL HD Monitor – Best Vertical Monitor 2020 (Value)
  3. BenQ PD3200Q DesignVue QHD Monitor – Best Vertical Monitor 2020 (For Professionals)
  4. Alienware AW2518Hf Gaming Monitor – Best Vertical Monitor 2020 (Gaming)

Best Vertical Monitor 2020

Welcome to the wtg buying guide for the Best Vertical Monitor 2020. We’ve compiled a list of the best vertical monitors with various strengths and attributes such as: screen size, screen resolution, and cost.

Benefits of a Vertical Monitor

A vertical computer monitor allows you to physically view your screen in a portrait mode instead of a traditional landscape mode. You’ll be able to fit considerably more content (vertically) on the screen, which can be quite useful. It can drastically improve experiences such as designing vertical layouts, viewing large sections of code, reading an ebook, viewing search engine results, an online article, and more.

Best Vertical Monitor 2020 – In-Depth List:

Dell Ultra Sharp U2718Q 4K Monitor

Best Vertical Monitor 2020
Best Vertical Monitor 2020 (Overall)

The Dell Ultrasharp U2718Q is the upgraded version of the Dell Ultrasharp U2719DX. This vertical monitor features a 4K screen that is exceptionally sharp and bright when it comes to displaying visuals (as you would expect from the name). The design and overall look of the monitor are similar to the other Dell Ultrasharp series of monitors (which we believe look great).

Best Vertical Monitor 2020 (Overall)

The screen itself is large, vibrant and professional grade, yet is also versatile for essentially every application (even gaming). The stand is stylish and effortlessly maneuvers from landscape to portrait. The pricing is affordable, and is worth every penny (what more can we say). Take a look and decide for yourself.


ASUS VN279QL HD Monitor

Best Vertical Monitor 2020
Best Vertical Monitor 2020 (Value)

The ASUS vertical monitor provides high definition viewing with HDMI and VGA display ports. The bezel is extremely narrow with a width of only 8mm. That is part of the reason why this is a good monitor if you are looking for something to use for multi-screen viewing. Add to these features the ergonomically designed stand and you have a screen that can tilt, swivel, and pivot.

The ASUS VN279QL provides clarity by using ASUS Vivid Pixel Technology in its design. The result is a detail oriented visual. This model also includes a high definition mobile link for your tablet or smartphone as well as HDMI/MHL, D-Sub, and Display Port connectivity for all of your other electronic devices.

The most compelling aspect of this vertical monitor is the value. It’s considerably lower priced for what you get.


BenQ PD3200Q DesignVue QHD Monitor

Best Vertical Monitor 2020
Best Vertical Monitor 2020 (For Professionals)

If you consider yourself a design and/or development professional, than this vertical monitor is for you. Similar in many ways to the Dell Ultrasharp listed above, it pulls ahead in it’s focus on detail and the monitor’s physical size and resolution.

The PD3200Q boasts a stylish and modern design, with modest 2-centimetre bezels surrounding the 10-bit VA panel. This monitor is able to hit 100% of the sRGB and Rec. 709 color spaces. The monitor lacks needless ornamentation, with a subtle QHD logo in the bottom centre and a white LED power button in the bottom right.

Rather than having OSD controls on the back or side, the PD3200Q has touch-sensitive lights on the bezel itself. This makes it easier to adjust settings, as there’s never any doubt what a given button press will do.

The PD3200Q also has a great stand, with a strong metal body and reams of adjustability — you can rotate the screen 90 degrees to use in portrait mode, adjust the height up and down through 130mm, and of course tilt and swivel to your heart’s content. This gives you a ton of flexibility when it comes to making your monitor suit you and your environment.


Alienware AW2518Hf Gaming Monitor

Best Vertical Monitor 2020
Best Vertical Monitor 2020 (Gaming)

The Alienware AW2518Hf is easily our most recommended 240Hz vertical monitor for gaming. The monitor features a TN-panel manufactured by AU Optronics that is incredibly good at producing high quality viewing angles and colors.

The Alienware AW2518Hf is very well equipped with gaming functions such as AMD FreeSync and Flicker-Free technology for seamless gaming. For those who are concerned about brightness, the monitor possesses 400-nits maximum intensity for viewing in daylight.

The stand offers pivot, swivel, tilt, and height function for those who want to take advantage of multiple setups.

One of the main highlights of the Alienware AW2518Hf is its gamer-centric design that stands out apart from other gaming monitors in its segment. The tripod-style stand at the bottom gives it an aggressive look which gamers will love.


Featured related articles:


best vertical dual monitor stand

vertical monitor best buy

vertical lcd monitor

best vertical monitor for trading

best vertical computer monitor

best vertical monitor mount

best buy vertical monitor

best tablet for vertical monitor pixelbook

best tablet for vertical monitor

best monitor arms for vertical

best monitor for vertical with a 27 monitor

best vertical pc monitor

best monitor size for vertical reading

best apps for vertical monitor

best 4k vertical monitor

best vertical monitor stand

what is the best vertical sync setting in nvidia control panel for a 144mhz monitor

best monitor technology vertical

best vertical monitor dor documents

best greatest vertical monitor setup

best vertical monitor setup

best dual monitor wallpapers with second monitor vertical

best monitor to use in vertical

best monitor to use as vertical orientation

best monitor for vertical use 32

best vertical monitor 2016

best vertical dual monitor setup

best vertical monitor apps

best monitor landscape vertical combo

vertical dual monitor stand best buy

making best use of a vertical monitor set up

vertical docking station dual monitor best buy

best monitor for vertical

best monitor for vertical mount

best vertical second monitor

best vertical ips monitor

best vertical monitor reddit

best wallpaper for vertical monitor

best dual vertical monitor wallpapers

best monitor for vertical viewing

best use for vertical monitor setup

best vertical monitor for productivity

best duo monitor vertical wallpaper

best wallpaper for vertical monitor reso

best utilize vertical monitor

best montior mount with vertical side monitor

best vertical monitor for 27 inch

best vertical monitor coding

best resolution for vertical 1920 1080 monitor

2018 best vertical monitor for programming

best vertical monitor for macbook pro

best monitor for vertical use 2018

best vertical monitor stands

best vertical monitor mounts

how best to utilize a vertical monitor

best 27 inch monitor 2015 vertical

best vertical 2nd monitor

best use vertical monitor

best vertical monitor 2018

best vertical monitor for programming

reddit best vertical monitor

best mail app for vertical monitor

best ways to use vertical monitor

best solution for vertical monitor

best monitor shape for vertical viewing

best monitor to have vertical

best monitor size for vertical

best monitor for vertical viewing

best vertical monitor deals

best dual vertical monitor setup

best vertical monitor to go with 34 ultrawide

vertical monitor cheap best buy

best vertical monitor for coding

best value vertical monitor

best monitor to turn vertical for coding

vertical monitor stand best buy

best monitor for vertical use reddit

best side vertical monitor

best monitor arm for dual monitors in vertical array

what size of monitor is best for vertical

best vertical fov for 16:9 monitor

best monitor mount vertical ultrawide

best size monitor to use for vertical

best side by side monitor vertical

best use for a vertical monitor

best vertical monitor 2019

reddit best dual vertical monitor desk mounts

best vertical monitor 2015

best cheap vertical monitor

best size for vertical monitor

game best played on vertical monitor

best wall mount monitor stand with vertical range of motion

best vertical monitor size

best monitor for vertical orientation

best wallpaper for horizontal and vertical monitor

best stand to use ultrawide monitor vertical

best vertical screen monitor 2018

best monitor to match with macbook pro vertical

best monitor for vertical use 32″

what is the best vertical sync setting in nvidia control panel for a 144 mhz monitor

best dual vertical monitor stand

best monitor shape for vertical position

best vertical monitor 2017

best budget vertical monitor

best size vertical computer monitor for dual screen

best buy vertical monitor wall bracket

best monitor for vertical with a 27″ monitor

best resolution for vertical monitor

best wallpaper for vertical monitor resolution

best vertical/horizontal monitor desk mounts

best way to setup a vertical monitor

best vertical and horizontal monitor combo

the best vertical monitor

best vertical gaming monitor

vertical computer monitor best buy

best vertical monitor for mac

best monitor for vertical display

best vertical monitor 2020

best vertical alignment monitor

best monitor that can go vertical

monitor best vertical viewing angle

vertical monitor best

best dual monitor vertical mount

vertical monitor

vertical screen

vertical monitors

vertical computer monitor

vertical tv

vertical monitor setup

best vertical monitor

vertical gaming

40 inch vertical

dell vertical monitor

best monitor for vertical use

tv vertical display

vertical display

vertical screens

vertical monitor for coding

monitor vertical

how to set up a vertical monitor

monitor vertical dell

vertical monitor amazon

vertical tv displays

vertical screen reviews

vertical computer screen

vertical tv screen

vertical display monitor

vertical screen monitor

mac vertical monitor

vertical pc monitor

best vertical monitors

vertical tv display

vertical computer

vertical touch screen monitor

best vertical

how to change laptop screen from horizontal to vertical

monitor vertical stand

turn monitor vertical

vertical and horizontal monitor setup

dell monitor vertical

asus vertical monitor

vertical ultrawide monitor

vertical television

vertical lcd monitors

how to make a monitor vertical

cheap vertical monitor

vertical orientation monitor

computer monitors vertical

24 inch vertical

vertical tv monitor

computer screen vertical

samsung vertical monitor

vertical computer monitor stand

computer monitor vertical

how to make your monitor vertical

vertical computer monitors

screen vertical

25 inch vertical

computer monitor vertical display

vertical dual monitor

hp vertical monitor

dell vertical monitor stand

vertical pc

vertical desktop monitor

vertical led display

4k vertical monitor

vertical tilt monitor

computer monitor is an output device that displays information in pictorial form. A monitor usually comprises the display devicecircuitry, casing, and power supply. The display device in modern monitors is typically a thin film transistor liquid crystal display (TFT-LCD) with LED backlighting having replaced cold-cathode fluorescent lamp (CCFL) backlighting. Older monitors used a cathode ray tube (CRT). Monitors are connected to the computer via VGADigital Visual Interface (DVI), HDMIDisplayPortThunderboltlow-voltage differential signaling (LVDS) or other proprietary connectors and signals.

Originally, computer monitors were used for data processing while television sets were used for entertainment. From the 1980s onwards, computers (and their monitors) have been used for both data processing and entertainment, while televisions have implemented some computer functionality. The common aspect ratio of televisions, and computer monitors, has changed from 4:3 to 16:10, to 16:9.

Modern computer monitors are easily interchangeable with conventional television sets. However, as computer monitors do not necessarily include integrated speakers, it may not be possible to use a computer monitor without external components.[1]

Early electronic computers were fitted with a panel of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the ‘monitor’. As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program’s operation.[citation needed]

As technology developed engineers realized that the output of a CRT display was more flexible than a panel of light bulbs and eventually, by giving control of what was displayed in the program itself, the monitor itself became a powerful output device in its own right.[citation needed]

Computer monitors were formerly known as visual display units (VDU), but this term had mostly fallen out of use by the 1990s.

The first computer monitors used cathode ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the system in a single large chassis. The display was monochrome and far less sharp and detailed than on a modern flat-panel monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for the specialized military, industrial and scientific applications but they were far too costly for general use.

Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a standard feature of the pioneering Apple II, introduced in 1977, and the specialty of the more graphically sophisticated Atari 800, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 x 200 pixels, or it could produce 640 x 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 x 350.[2]

By the end of the 1980s color CRT monitors that could clearly display 1024 x 768 pixels were widely available and increasingly affordable. During the following decade, maximum display resolutions gradually increased and prices continued to fall. CRT technology remained dominant in the PC monitor market into the new millennium partly because it was cheaper to produce and offered to view angles close to 180 degrees.[3] CRTs still offer some image quality advantages[clarification needed] over LCDs but improvements to the latter have made them much less obvious. The dynamic range of early LCD panels was very poor, and although text and other motionless graphics were sharper than on a CRT, an LCD characteristic known as pixel lag caused moving graphics to appear noticeably smeared and blurry.

There are multiple technologies that have been used to implement liquid crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.

TFT-LCD is a variant of LCD which is now the dominant technology used for computer monitors.[4]

The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined over a period of years they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo L66 in the mid-1990s, the Apple Studio Display in 1998, and the Apple Cinema Display in 1999. In 2003, TFT-LCDs outsold CRTs for the first time, becoming the primary technology used for computer monitors.[3] The main advantages of LCDs over CRT displays are that LCDs consume less power, take up much less space, and are considerably lighter. The now common active matrix TFT-LCD technology also has less flickering than CRTs, which reduces eye strain.[5] On the other hand, CRT monitors have superior contrast, have a superior response time, are able to use multiple screen resolutions natively, and there is no discernible flicker if the refresh rate[6] is set to a sufficiently high value. LCD monitors have now very high temporal accuracy and can be used for vision research.[7]

High dynamic range (HDR)[6] has been implemented into high-end LCD monitors to improve color accuracy. Since around the late 2000s, widescreen LCD monitors have become popular, in part due to television seriesmotion pictures and video games transitioning to high-definition (HD), which makes standard-width monitors unable to display them correctly as they either stretch or crop HD content. These types of monitors may also display it in the proper width, however they usually fill the extra space at the top and bottom of the image with black bars. Other advantages of widescreen monitors over standard-width monitors is that they make work more productive by displaying more of a user’s documents and images, and allow displaying toolbars with documents. They also have a larger viewing area, with a typical widescreen monitor having a 16:9 aspect ratio, compared to the 4:3 aspect ratio of a typical standard-width monitor.

Measurements of performance

The performance of a monitor is measured by the following parameters:

  • Luminance is measured in candelas per square meter (cd/m2 also called a Nit).
  • Color depth is measured in bits per primary color or bits for all colors.
  • Gamut is measured as coordinates in the CIE 1931 color space. The names sRGB or AdobeRGB are shorthand notations.
  • Aspect ratio is the ratio of the horizontal length to the vertical length. Monitors usually have the aspect ratio 4:35:416:10 or 16:9.
  • Viewable image size is usually measured diagonally, but the actual widths and heights are more informative since they are not affected by the aspect ratio in the same way. For CRTs, the viewable size is typically 1 in (25 mm) smaller than the tube itself.
  • Display resolution is the number of distinct pixels in each dimension that can be displayed. For a given display size, maximum resolution is limited by dot pitch.
  • Dot pitch is the distance between sub-pixels of the same color in millimeters. In general, the smaller the dot pitch, the sharper the picture will appear.
  • Refresh rate is the number of times in a second that a display is illuminated. Maximum refresh rate is limited by response time.
  • Response time is the time a pixel in a monitor takes to go from active (white) to inactive (black) and back to active (white) again, measured in milliseconds. Lower numbers mean faster transitions and therefore fewer visible image artifacts.
  • Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing.
  • Power consumption is measured in watts.
  • Delta-E: Color accuracy is measured in delta-E; the lower the delta-E, the more accurate the color representation. A delta-E of below 1 is imperceptible to the human eye. Delta-Es of 2 to 4 are considered good and require a sensitive eye to spot the difference.
  • Viewing angle is the maximum angle at which images on the monitor can be viewed, without excessive degradation to the image. It is measured in degrees horizontally and vertically.
  • On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picturevideo or working space, without obstruction from the case or other aspects of the unit’s design. The main measurements for display devices are: width, height, total area and the diagonal.

    The size of a display is usually by monitor manufacturers given by the diagonal, i.e. the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube’s face (due to the thickness of the glass). This method continued even when cathode ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.

    With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger visible area than an eighteen-inch cathode ray tube.

    The estimation of the monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).

computer monitor is an output device that displays information in pictorial form. A monitor usually comprises the display devicecircuitry, casing, and power supply. The display device in modern monitors is typically a thin film transistor liquid crystal display (TFT-LCD) with LED backlighting having replaced cold-cathode fluorescent lamp (CCFL) backlighting. Older monitors used a cathode ray tube (CRT). Monitors are connected to the computer via VGADigital Visual Interface (DVI), HDMIDisplayPortThunderboltlow-voltage differential signaling (LVDS) or other proprietary connectors and signals.

Originally, computer monitors were used for data processing while television sets were used for entertainment. From the 1980s onwards, computers (and their monitors) have been used for both data processing and entertainment, while televisions have implemented some computer functionality. The common aspect ratio of televisions, and computer monitors, has changed from 4:3 to 16:10, to 16:9.

Modern computer monitors are easily interchangeable with conventional television sets. However, as computer monitors do not necessarily include integrated speakers, it may not be possible to use a computer monitor without external components.[1]

Early electronic computers were fitted with a panel of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the ‘monitor’. As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program’s operation.[citation needed]

As technology developed engineers realized that the output of a CRT display was more flexible than a panel of light bulbs and eventually, by giving control of what was displayed in the program itself, the monitor itself became a powerful output device in its own right.[citation needed]

Computer monitors were formerly known as visual display units (VDU), but this term had mostly fallen out of use by the 1990s.

The first computer monitors used cathode ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the system in a single large chassis. The display was monochrome and far less sharp and detailed than on a modern flat-panel monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for the specialized military, industrial and scientific applications but they were far too costly for general use.

Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a standard feature of the pioneering Apple II, introduced in 1977, and the specialty of the more graphically sophisticated Atari 800, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 x 200 pixels, or it could produce 640 x 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 x 350.[2]

By the end of the 1980s color CRT monitors that could clearly display 1024 x 768 pixels were widely available and increasingly affordable. During the following decade, maximum display resolutions gradually increased and prices continued to fall. CRT technology remained dominant in the PC monitor market into the new millennium partly because it was cheaper to produce and offered to view angles close to 180 degrees.[3] CRTs still offer some image quality advantages[clarification needed] over LCDs but improvements to the latter have made them much less obvious. The dynamic range of early LCD panels was very poor, and although text and other motionless graphics were sharper than on a CRT, an LCD characteristic known as pixel lag caused moving graphics to appear noticeably smeared and blurry.

There are multiple technologies that have been used to implement liquid crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.

TFT-LCD is a variant of LCD which is now the dominant technology used for computer monitors.[4]

The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined over a period of years they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo L66 in the mid-1990s, the Apple Studio Display in 1998, and the Apple Cinema Display in 1999. In 2003, TFT-LCDs outsold CRTs for the first time, becoming the primary technology used for computer monitors.[3] The main advantages of LCDs over CRT displays are that LCDs consume less power, take up much less space, and are considerably lighter. The now common active matrix TFT-LCD technology also has less flickering than CRTs, which reduces eye strain.[5] On the other hand, CRT monitors have superior contrast, have a superior response time, are able to use multiple screen resolutions natively, and there is no discernible flicker if the refresh rate[6] is set to a sufficiently high value. LCD monitors have now very high temporal accuracy and can be used for vision research.[7]

High dynamic range (HDR)[6] has been implemented into high-end LCD monitors to improve color accuracy. Since around the late 2000s, widescreen LCD monitors have become popular, in part due to television seriesmotion pictures and video games transitioning to high-definition (HD), which makes standard-width monitors unable to display them correctly as they either stretch or crop HD content. These types of monitors may also display it in the proper width, however they usually fill the extra space at the top and bottom of the image with black bars. Other advantages of widescreen monitors over standard-width monitors is that they make work more productive by displaying more of a user’s documents and images, and allow displaying toolbars with documents. They also have a larger viewing area, with a typical widescreen monitor having a 16:9 aspect ratio, compared to the 4:3 aspect ratio of a typical standard-width monitor.

Measurements of performance

The performance of a monitor is measured by the following parameters:

  • Luminance is measured in candelas per square meter (cd/m2 also called a Nit).
  • Color depth is measured in bits per primary color or bits for all colors.
  • Gamut is measured as coordinates in the CIE 1931 color space. The names sRGB or AdobeRGB are shorthand notations.
  • Aspect ratio is the ratio of the horizontal length to the vertical length. Monitors usually have the aspect ratio 4:35:416:10 or 16:9.
  • Viewable image size is usually measured diagonally, but the actual widths and heights are more informative since they are not affected by the aspect ratio in the same way. For CRTs, the viewable size is typically 1 in (25 mm) smaller than the tube itself.
  • Display resolution is the number of distinct pixels in each dimension that can be displayed. For a given display size, maximum resolution is limited by dot pitch.
  • Dot pitch is the distance between sub-pixels of the same color in millimeters. In general, the smaller the dot pitch, the sharper the picture will appear.
  • Refresh rate is the number of times in a second that a display is illuminated. Maximum refresh rate is limited by response time.
  • Response time is the time a pixel in a monitor takes to go from active (white) to inactive (black) and back to active (white) again, measured in milliseconds. Lower numbers mean faster transitions and therefore fewer visible image artifacts.
  • Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing.
  • Power consumption is measured in watts.
  • Delta-E: Color accuracy is measured in delta-E; the lower the delta-E, the more accurate the color representation. A delta-E of below 1 is imperceptible to the human eye. Delta-Es of 2 to 4 are considered good and require a sensitive eye to spot the difference.
  • Viewing angle is the maximum angle at which images on the monitor can be viewed, without excessive degradation to the image. It is measured in degrees horizontally and vertically.
  • On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picturevideo or working space, without obstruction from the case or other aspects of the unit’s design. The main measurements for display devices are: width, height, total area and the diagonal.

    The size of a display is usually by monitor manufacturers given by the diagonal, i.e. the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube’s face (due to the thickness of the glass). This method continued even when cathode ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.

    With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger visible area than an eighteen-inch cathode ray tube.

    The estimation of the monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).

computer monitor is an output device that displays information in pictorial form. A monitor usually comprises the display devicecircuitry, casing, and power supply. The display device in modern monitors is typically a thin film transistor liquid crystal display (TFT-LCD) with LED backlighting having replaced cold-cathode fluorescent lamp (CCFL) backlighting. Older monitors used a cathode ray tube (CRT). Monitors are connected to the computer via VGADigital Visual Interface (DVI), HDMIDisplayPortThunderboltlow-voltage differential signaling (LVDS) or other proprietary connectors and signals.

Originally, computer monitors were used for data processing while television sets were used for entertainment. From the 1980s onwards, computers (and their monitors) have been used for both data processing and entertainment, while televisions have implemented some computer functionality. The common aspect ratio of televisions, and computer monitors, has changed from 4:3 to 16:10, to 16:9.

Modern computer monitors are easily interchangeable with conventional television sets. However, as computer monitors do not necessarily include integrated speakers, it may not be possible to use a computer monitor without external components.[1]

Early electronic computers were fitted with a panel of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the ‘monitor’. As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program’s operation.[citation needed]

As technology developed engineers realized that the output of a CRT display was more flexible than a panel of light bulbs and eventually, by giving control of what was displayed in the program itself, the monitor itself became a powerful output device in its own right.[citation needed]

Computer monitors were formerly known as visual display units (VDU), but this term had mostly fallen out of use by the 1990s.

The first computer monitors used cathode ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the system in a single large chassis. The display was monochrome and far less sharp and detailed than on a modern flat-panel monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for the specialized military, industrial and scientific applications but they were far too costly for general use.

Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a standard feature of the pioneering Apple II, introduced in 1977, and the specialty of the more graphically sophisticated Atari 800, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 x 200 pixels, or it could produce 640 x 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 x 350.[2]

By the end of the 1980s color CRT monitors that could clearly display 1024 x 768 pixels were widely available and increasingly affordable. During the following decade, maximum display resolutions gradually increased and prices continued to fall. CRT technology remained dominant in the PC monitor market into the new millennium partly because it was cheaper to produce and offered to view angles close to 180 degrees.[3] CRTs still offer some image quality advantages[clarification needed] over LCDs but improvements to the latter have made them much less obvious. The dynamic range of early LCD panels was very poor, and although text and other motionless graphics were sharper than on a CRT, an LCD characteristic known as pixel lag caused moving graphics to appear noticeably smeared and blurry.

There are multiple technologies that have been used to implement liquid crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.

TFT-LCD is a variant of LCD which is now the dominant technology used for computer monitors.[4]

The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined over a period of years they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo L66 in the mid-1990s, the Apple Studio Display in 1998, and the Apple Cinema Display in 1999. In 2003, TFT-LCDs outsold CRTs for the first time, becoming the primary technology used for computer monitors.[3] The main advantages of LCDs over CRT displays are that LCDs consume less power, take up much less space, and are considerably lighter. The now common active matrix TFT-LCD technology also has less flickering than CRTs, which reduces eye strain.[5] On the other hand, CRT monitors have superior contrast, have a superior response time, are able to use multiple screen resolutions natively, and there is no discernible flicker if the refresh rate[6] is set to a sufficiently high value. LCD monitors have now very high temporal accuracy and can be used for vision research.[7]

High dynamic range (HDR)[6] has been implemented into high-end LCD monitors to improve color accuracy. Since around the late 2000s, widescreen LCD monitors have become popular, in part due to television seriesmotion pictures and video games transitioning to high-definition (HD), which makes standard-width monitors unable to display them correctly as they either stretch or crop HD content. These types of monitors may also display it in the proper width, however they usually fill the extra space at the top and bottom of the image with black bars. Other advantages of widescreen monitors over standard-width monitors is that they make work more productive by displaying more of a user’s documents and images, and allow displaying toolbars with documents. They also have a larger viewing area, with a typical widescreen monitor having a 16:9 aspect ratio, compared to the 4:3 aspect ratio of a typical standard-width monitor.

Measurements of performance

The performance of a monitor is measured by the following parameters:

  • Luminance is measured in candelas per square meter (cd/m2 also called a Nit).
  • Color depth is measured in bits per primary color or bits for all colors.
  • Gamut is measured as coordinates in the CIE 1931 color space. The names sRGB or AdobeRGB are shorthand notations.
  • Aspect ratio is the ratio of the horizontal length to the vertical length. Monitors usually have the aspect ratio 4:35:416:10 or 16:9.
  • Viewable image size is usually measured diagonally, but the actual widths and heights are more informative since they are not affected by the aspect ratio in the same way. For CRTs, the viewable size is typically 1 in (25 mm) smaller than the tube itself.
  • Display resolution is the number of distinct pixels in each dimension that can be displayed. For a given display size, maximum resolution is limited by dot pitch.
  • Dot pitch is the distance between sub-pixels of the same color in millimeters. In general, the smaller the dot pitch, the sharper the picture will appear.
  • Refresh rate is the number of times in a second that a display is illuminated. Maximum refresh rate is limited by response time.
  • Response time is the time a pixel in a monitor takes to go from active (white) to inactive (black) and back to active (white) again, measured in milliseconds. Lower numbers mean faster transitions and therefore fewer visible image artifacts.
  • Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing.
  • Power consumption is measured in watts.
  • Delta-E: Color accuracy is measured in delta-E; the lower the delta-E, the more accurate the color representation. A delta-E of below 1 is imperceptible to the human eye. Delta-Es of 2 to 4 are considered good and require a sensitive eye to spot the difference.
  • Viewing angle is the maximum angle at which images on the monitor can be viewed, without excessive degradation to the image. It is measured in degrees horizontally and vertically.
  • On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picturevideo or working space, without obstruction from the case or other aspects of the unit’s design. The main measurements for display devices are: width, height, total area and the diagonal.

    The size of a display is usually by monitor manufacturers given by the diagonal, i.e. the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube’s face (due to the thickness of the glass). This method continued even when cathode ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.

    With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger visible area than an eighteen-inch cathode ray tube.

    The estimation of the monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).

computer monitor is an output device that displays information in pictorial form. A monitor usually comprises the display devicecircuitry, casing, and power supply. The display device in modern monitors is typically a thin film transistor liquid crystal display (TFT-LCD) with LED backlighting having replaced cold-cathode fluorescent lamp (CCFL) backlighting. Older monitors used a cathode ray tube (CRT). Monitors are connected to the computer via VGADigital Visual Interface (DVI), HDMIDisplayPortThunderboltlow-voltage differential signaling (LVDS) or other proprietary connectors and signals.

Originally, computer monitors were used for data processing while television sets were used for entertainment. From the 1980s onwards, computers (and their monitors) have been used for both data processing and entertainment, while televisions have implemented some computer functionality. The common aspect ratio of televisions, and computer monitors, has changed from 4:3 to 16:10, to 16:9.

Modern computer monitors are easily interchangeable with conventional television sets. However, as computer monitors do not necessarily include integrated speakers, it may not be possible to use a computer monitor without external components.[1]

Early electronic computers were fitted with a panel of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as the ‘monitor’. As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program’s operation.[citation needed]

As technology developed engineers realized that the output of a CRT display was more flexible than a panel of light bulbs and eventually, by giving control of what was displayed in the program itself, the monitor itself became a powerful output device in its own right.[citation needed]

Computer monitors were formerly known as visual display units (VDU), but this term had mostly fallen out of use by the 1990s.

The first computer monitors used cathode ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of the system in a single large chassis. The display was monochrome and far less sharp and detailed than on a modern flat-panel monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for the specialized military, industrial and scientific applications but they were far too costly for general use.

Some of the earliest home computers (such as the TRS-80 and Commodore PET) were limited to monochrome CRT displays, but color display capability was already a standard feature of the pioneering Apple II, introduced in 1977, and the specialty of the more graphically sophisticated Atari 800, introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter, which could display four colors with a resolution of 320 x 200 pixels, or it could produce 640 x 200 pixels with two colors. In 1984 IBM introduced the Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 x 350.[2]

By the end of the 1980s color CRT monitors that could clearly display 1024 x 768 pixels were widely available and increasingly affordable. During the following decade, maximum display resolutions gradually increased and prices continued to fall. CRT technology remained dominant in the PC monitor market into the new millennium partly because it was cheaper to produce and offered to view angles close to 180 degrees.[3] CRTs still offer some image quality advantages[clarification needed] over LCDs but improvements to the latter have made them much less obvious. The dynamic range of early LCD panels was very poor, and although text and other motionless graphics were sharper than on a CRT, an LCD characteristic known as pixel lag caused moving graphics to appear noticeably smeared and blurry.

There are multiple technologies that have been used to implement liquid crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines.

TFT-LCD is a variant of LCD which is now the dominant technology used for computer monitors.[4]

The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined over a period of years they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors was the Eizo L66 in the mid-1990s, the Apple Studio Display in 1998, and the Apple Cinema Display in 1999. In 2003, TFT-LCDs outsold CRTs for the first time, becoming the primary technology used for computer monitors.[3] The main advantages of LCDs over CRT displays are that LCDs consume less power, take up much less space, and are considerably lighter. The now common active matrix TFT-LCD technology also has less flickering than CRTs, which reduces eye strain.[5] On the other hand, CRT monitors have superior contrast, have a superior response time, are able to use multiple screen resolutions natively, and there is no discernible flicker if the refresh rate[6] is set to a sufficiently high value. LCD monitors have now very high temporal accuracy and can be used for vision research.[7]

High dynamic range (HDR)[6] has been implemented into high-end LCD monitors to improve color accuracy. Since around the late 2000s, widescreen LCD monitors have become popular, in part due to television seriesmotion pictures and video games transitioning to high-definition (HD), which makes standard-width monitors unable to display them correctly as they either stretch or crop HD content. These types of monitors may also display it in the proper width, however they usually fill the extra space at the top and bottom of the image with black bars. Other advantages of widescreen monitors over standard-width monitors is that they make work more productive by displaying more of a user’s documents and images, and allow displaying toolbars with documents. They also have a larger viewing area, with a typical widescreen monitor having a 16:9 aspect ratio, compared to the 4:3 aspect ratio of a typical standard-width monitor.

Measurements of performance

The performance of a monitor is measured by the following parameters:

  • Luminance is measured in candelas per square meter (cd/m2 also called a Nit).
  • Color depth is measured in bits per primary color or bits for all colors.
  • Gamut is measured as coordinates in the CIE 1931 color space. The names sRGB or AdobeRGB are shorthand notations.
  • Aspect ratio is the ratio of the horizontal length to the vertical length. Monitors usually have the aspect ratio 4:35:416:10 or 16:9.
  • Viewable image size is usually measured diagonally, but the actual widths and heights are more informative since they are not affected by the aspect ratio in the same way. For CRTs, the viewable size is typically 1 in (25 mm) smaller than the tube itself.
  • Display resolution is the number of distinct pixels in each dimension that can be displayed. For a given display size, maximum resolution is limited by dot pitch.
  • Dot pitch is the distance between sub-pixels of the same color in millimeters. In general, the smaller the dot pitch, the sharper the picture will appear.
  • Refresh rate is the number of times in a second that a display is illuminated. Maximum refresh rate is limited by response time.
  • Response time is the time a pixel in a monitor takes to go from active (white) to inactive (black) and back to active (white) again, measured in milliseconds. Lower numbers mean faster transitions and therefore fewer visible image artifacts.
  • Contrast ratio is the ratio of the luminosity of the brightest color (white) to that of the darkest color (black) that the monitor is capable of producing.
  • Power consumption is measured in watts.
  • Delta-E: Color accuracy is measured in delta-E; the lower the delta-E, the more accurate the color representation. A delta-E of below 1 is imperceptible to the human eye. Delta-Es of 2 to 4 are considered good and require a sensitive eye to spot the difference.
  • Viewing angle is the maximum angle at which images on the monitor can be viewed, without excessive degradation to the image. It is measured in degrees horizontally and vertically.
  • On two-dimensional display devices such as computer monitors the display size or view able image size is the actual amount of screen space that is available to display a picturevideo or working space, without obstruction from the case or other aspects of the unit’s design. The main measurements for display devices are: width, height, total area and the diagonal.

    The size of a display is usually by monitor manufacturers given by the diagonal, i.e. the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television, when picture tubes with circular faces were in common use. Being circular, it was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube’s face (due to the thickness of the glass). This method continued even when cathode ray tubes were manufactured as rounded rectangles; it had the advantage of being a single number specifying the size, and was not confusing when the aspect ratio was universally 4:3.

    With the introduction of flat panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger visible area than an eighteen-inch cathode ray tube.

    The estimation of the monitor size by the distance between opposite corners does not take into account the display aspect ratio, so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and area 211 sq in (1,360 cm2), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm2).